AN APPROXIMATE METHOD OF SOLVING STATIONARY
HEAT CONDUCTION PROBLEMS WITH MIXED BOUNDARY
CONDITIONS OF THE THIRD KIND

Yu. Ya. lossel', G, E. Klenov, UDC 536.24
and R. A, Pavlovskii

We consider an approximate method of determining temperature fields when the parameter
in the boundary conditions for convective heat transfer has different values on different
portions of the boundary surface, We illustrate the effectiveness of our method with ex-
amples.

1. A broad class of applied problems in the theory of stationary heat conduction is connected with
the need for determining temperature fields in a solid under convective heat-transfer conditions on its sur-
face, wherein values of the heat-transfer coefficient differ, in general, from one portion of the surface to
another. In this instance the corresponding boundary value problem is formulated (in nondimensional form)
as follows:
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where ki = 1/Bi; and n is along the inner normal to the boundary surface,

A rigorous solution of a problem of this kind, even in the simplest cases involving doubly~connected
boundary surfaces for domains of canonical type (a halfspace, a slab, and similar configurations), turns
out to be very involved and leads to a need for considering systems of integral equations (or series) (see,
for example, [1, 2]). It is therefore necessary to go to an approximate analytical sclution, one suitable for
engineering calculations,

To construct such an approximate solution we replace the boundary conditions (2) by conditions of
the form

. ot .
P =IO 2y ®
where =
l( on S,
C,+Cs
S é 'T_ on S)y (4)
! Cpn+Cpnons$

m?

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol.27, No., 3, pp.507-512, September, 1974,
Original article submitted November 24, 1972,

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

1133



1 oT :

Ci=(kj—bky)— | 2 P

j=(k;—ky) S, j o 48 =23 ..., m (5)
j

and T is an approximate value of the temperature,

It is readily seen that the change to boundary conditions of this kind is connected with the follow-
ing assumption:
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here the support surface S;, relative to which "smoothing" of the coefficients kj G=2,3...,m)is carried

out, is taken to be the surface of largest area (or, equivalently, with the smallest value of k;) for which

there has been established, a priori, the largest nonuniformity in the distribution of the normal component

of the heat flux,

The constants C'; are obtained from the system of equations (5) after a search has been made for
an approximate solution T = T(ki, CiCo vt . Cm; Co'y e v ., Cy").

In seeking a more accurate temperature distribution on a particular portion of the boundary surface
!
we can resort to further subdividing this portion (Sj) into yet finer portions Sjt(SJ- = }: Sjt).*
t=1

We consider now an application of this method to specific examples.

2. We determine the temperature field in the halfspace y >0, subject to the following boundary
conditions:

T —ky =0 [¢i>1, y=0
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In accordance with Eqgs. (3) and (4) the simplified boundary conditions for this example take on the form

2 af | 0 x>l y=0;
T— = X ;
& gy 11=C lxi<1, g=0.

(8)

The solution of this latter problem can be easily obtained, for example, through the use of the integral
Fourier transform; it has the form
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In accord with [3], on the boundary y = 0 this solution is given by the expression (after correcting the errors
made in [3])
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where for Ix|= 1 we have o =1 and we take the upper sign, while for Ix|>1 we have o = 0 and we take the
lower sign.

At x = 0 (on the axis of symmetry) we have, starting from equation (9),

* A similar approach is used, it will be recalled, in electrically modelling potential fields with boundary
conditions of the third kind.
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The unknown constant C' is determined, moreover, in accordance with Eq. (5), as
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To refine this approximate solution we subdivide the strip Ix/= 1 into the three portions 1 = x <-a;
—a=x=sa;a <x<1, We then take the boundary conditions for Ix|= 1, y =0 in the form
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Here, 2I; =1, where I is given by the expression (14), Solution of the system (16) leads to the following
expressions for the unknown coefficients:
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Comparing the solutions obtained, for example, for k; =5, ky = 10, and a = 0.5, we find, after
corresponding calculations, that C' = —0,425, while —C;' = 0.413 and —~C,' = 0.426, whence it is easy to

show that the total heat flux on the area|X| =1, y = 0is equal to Q = 0.175, in the first case, and to @
= (0,170, in the second case,
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TABLE 1

iSolution of the prob~Smoothing of parameters ‘Smoothing of parameters with an

lem from its initiallwithout an additional decom~ :additional decomposition of the

k, [formulation (k; =1)|position of the strip|x]| =1,y = Ostrip intothree parts
740, 0) Q — l T, 0 Q —¢; 1 ~Cy | 7,0 Q
1
{ o {
1| 0,6040 | 0,865 | — — | = N — —
2 | 0,4259 | 0,6027 | 0,3020 | 0,422 | 0,6040 |0,280910,3137] 0,4251 |0,6033
5 10,2246 | 03167 | 0,6340 | 0,221 | 0,3168 |0,6227/0,644]1| 0,2247 |0.3167
10 | 0,1251 | 0,1770 | 0,7960 | 0,123 | 0,1766 |0,78840,8022) 0,1257 |0,1768
100 | 0,0138 | 0,01975| 0,9772 | 0,0138 | 0,01973)0,9763/0,9780| 0,0140 |0,01972

i

Thus, the correction, which results in a more refined solu-
tion at the expense of an additional decomposition of the strip [X|
= 1, y =0 into individual parts, is insignificant for the relation~
ship of the parameters k; and k, considered (amounting to less
than 3%), so that for the solution of the problem we can restrict
ourselves to the first approximation only.

%

]

N ! For ky =1 analogous calculations for various values of k,
\\ ? were also compared with the results obtained in solving the prob-
Co T P lem in its initial formulation (7) (see Table 1). This latter solu-
Vi H ! i i \4\L r . . . P .
P 3 Y % W0 80 kek, tion was obtained by conformal mapping of the original domain

onto the interior of a disk and then applying direct methods of
calculation (method of least squares), The error in the calcula-
tions, along a potential, amounted in this case to less than 5%,
while along the total heat flux it amounted to less than 1%.

Fig.1, Dependence of I on the para-
meter ky.

3. Inan analogous manner the temperature field in the halfspace z > 0 might be found with the follow-
ing boundary conditions:

oT

T —k, =0 r>1, z=0:

(19)

or =1 rgl, Z:O.

0z

An approximate solution of this problem, constructed by the same method but using the Hankel integral
transform, leads to the expression
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The manner in which I varies with k; is shown in Fig.1. The temperature field on the axis of the system
can be obtained, in this case, from the expression (see [4])
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and at the center of the disk, from the expression
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In conclusion, we note that the method described here can even be used in modelling the temper-

ature field in those cases in which it is difficult to reproduce in the model, for one reason or another, the
various values of the parameter k.

NOTATION
A, Laplace operator; Bi, Biot number; Q, total heat flux, si, ci, integral sine and cos'me, respec-
tively; Ei, integral function; Jy, J;, Bessel functions of the zeroth and first orders; 2F3(‘6"1’ﬁ B -2}, gen-
is

eralized hypergeometric series; My, Neuman function; Hy, Struve function; f, 1, Iy, I, I, , R, function sym-
bols; r, z, cylindrical coordinates; x, y, Cartesian coordinates; p, variable value; C, constant; Cj', un-
known coefficients; G, Euler constant,
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